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Abstract

This report provides an overview of central software components developed in the HPLT project,
organized in three main categories (a) data processing, (b) language model training and (c) translation
model training. All HPLT software is available under permissive open source licenses and hosted
in publicly accessible repositories, which serve as the primary means of software management and
community engagement. This report provides a high-level inventory of the HPLT software ecosystem
and pointers to installation and running instructions. The main purpose of this documentation is to
aid replicability and reuse, i.e. support prospective users in obtaining, adapting, and using relevant
components of the HPLT software stack.
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1 Executive Summary

1.1 Introduction

This deliverable, named HPLT Pipelines and Tools, provides an overview of central software components
developed in the HPLT project, two years into the project duration. The presentation is organized
according to three main categories: (a) data processing, (b) language model training and (c) translation
model training. This report provides a high-level inventory of the HPLT software ecosystem and
pointers to installation and running instructions. Some key software components have been previously
documented in other project deliverables; to avoid unnecessary duplication, this report will point
to earlier project documentation where appropriate. The main purpose of this documentation is to
aid replicability and reuse, i.e. support prospective users in obtaining, adapting, and using relevant
components of the HPLT software stack.

1.2 Brief summary of the HPLT project

The EU-funded HPLT project applies high-performance computing to scale and advance language
technologies. Leveraging upon recent advances in machine learning and astonishing storage capacities,
HPLT has already successfully processed huge language data sets and produced language and translation
models in numerous languages. The resulting models strongly focus on smooth integration, high accuracy,
and regulatory compliance concerning privacy. Unwanted biases and ethical issues are also on the
roadmap. The models and data sets have already had a substantial impact in the language service
market in the EU and beyond. They are open, free and available from established language repositories
for anyone interested in pursuing research or innovation projects and to support industry.

The project, coordinated by the Charles University in Prague (CUNI) with partners from five different
universities two HPC centres and a private NLP company, has set in place partnerships with other
projects, research institutions and companies for improved results.

This report encompasses software resources developed across work packages 2–7 and contributions by
all partners.
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2 Reflections on Software Management

Due to huge computational requirements, the HPLT project needs to utilise heterogeneous systems
to perform computations: starting for the beginning of the project, we used at least LUMI, Sigma2
NIRD, CESNET and Karolina clusters. To ensure consistency and replicability of the results, it is
vital to maintain the exact same software stack on multiple HPC clusters, including LUMI and other
systems, and to do it in a cost-efficient manner. This is necessary for replicability of our datasets,
models, and other results. However, full automation of software downloading, building (if necessary),
and installation is a complex undertaking. While the original intention of the HPLT project was to
standardize on the EasyBuild framework1 for automated software deployment wherever possible, we
have faced difficulties in achieving this. These difficulties are in part related to evolving policies on
LUMI, and in part to increasing use of the Python libraries ecosystem. EasyBuild deliberately disallows
automated dependency resolution via pip, Python’s native package installer. This indeed ensures
replicability, but it comes with the price of manually (and often redundantly) having to specify Python
dependencies into EasyBuild configuration files. Replicability here clashes with the ease of maintenance.

Thus, we had to give up the uniformity of approaches to automated software deployments across
different HPC clusters, and to make use of different tools for various stages of data processing and
model training, according to current state-of-the-art. In particular:

1. warc2text (our tool of choice for raw text extraction from WARC files, implemented in C++,
later described in section 3.2.1.1) is deployed on the storage systems in the Czech Republic and
Norway with EasyBuild.2

2. Further text processing, language identification, boilerplate removal, and normalization (so called
‘Stage 2’) is relying heavily on Python ecosystem and is deployed using pip.

3. Pipelines for training large language models also rely on Python internal mechanisms, but addition-
ally make heavy use of Singularity containers, as recently encouraged by LUMI administrators3.
Containers are well-suited for HPC environments, since they reduce strain on parallel file systems
by minimizing the number of files, but containers challenge modularity and module reuse.

The specific deployment procedures are described in the respective GitHub repositories (see the sections
below) There are still many open questions remaining regarding full automation of software download
and installation on HPC clusters, but the HPLT project did learn a lot from this experience. We hope
the recipes we provide will be helpful for other users.

1https://easybuild.io/
2https://github.com/bitextor/warc2text/tree/master/easyconfigs
3https://docs.lumi-supercomputer.eu/software/containers/singularity/
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3 Data Processing Software

3.1 Data Ingestion

Internet Archive1 is the main source of raw web crawls in the HPLT project. Additionally, we employ
crawls from Common Crawl2 which is a popular source of crawls for training language models. Both
sources provide crawls in the Web ARChive (WARC) format among others, which is consumed by our
data processing software.

3.1.1 Internet Archive

Internet Archive requires using a custom API for user authentication and data downloading. Command
line tools3 suggested to the users by Internet Archive provide low-level means of accessing their crawls,
but lack the ability of automatic reliable downloading of a set of web crawls. To automate downloading
of web crawls from Internet Archive we have developed special software.4 It allows downloading crawls
in many parallel threads, making as many attempts as required to download all files successfully.

Using this software, nine Internet Archive crawls with the total size of about 3.4 PB crawled over the
years 2012-2020 have been downloaded as the source of data for the latest HPLT data release. We found
it beneficial to run massively parallel downloading in up to 2000 parallel threads. The downloading
process was running in two data centres, NIRD and CESNET. The speed varied from 12 TB/day to
35 TB/day depending on the number of threads and the current availability and overall load of the
Internet Archive servers.

3.1.2 Common Crawl

For downloading Common Crawl (CC), no specific software was developed as it is publicly available
for downloading through the standard HTTP protocol. We employed the command line download
manager Aria2, which supports multi-thread downloading and automatic retries on failures.5 It takes a
file containing a list of URLs of WARC files to download, which in its turn can be downloaded directly
from the Common Crawl website.6 However, to facilitate downloading many crawls at once, helper
scripts were developed that generate file lists for Aria2 from a list of crawls.7

Using the described software, 12 randomly selected CC versions crawled over the years 2014–2022 were
downloaded, their total size is 738 TB. The downloading process was going in 100 parallel threads.8

The downloading speed was 20 TB/day on average.

1https://archive.org/
2https://commoncrawl.org/
3https://archive.org/developers/internetarchive/cli.html
4https://github.com/hplt-project/ia-download
5https://aria2.github.io/, version 1.36.0 was used
6E.g. https://data.commoncrawl.org/crawl-data/CC-MAIN-2022-49/index.html provides files with metadata related

to one of the CC crawls, including a list of URLs of the WARC files this crawl consists of.
7https://github.com/hplt-project/cc-download
8Due to the limitations on the number of simultaneously opened files in one of the data centres we were not able to

significantly increase it.
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3. Data Processing Software 3.2. Raw Text Extraction

3.2 Raw Text Extraction

Extraction of raw texts from WARC archives is performed in two stages.9 In the first stage, WARC
files are processed and relevant records are selected. From these records, web pages in HTML format
and additional metadata are extracted and dumped to disk. This stage requires voluminous storage
and fast access to WARC files but it is not computationally intensive. Thus, this stage was run in the
data centers on the compute nodes directly attached to the storage with WARC files.

The second stage consists of parsing HTML pages, removing boilerplate and extracting text in natural
language, and finally running language identification on the extracted text. This stage is significantly
more computationally intensive, thus, it was run on the LUMI cluster.

3.2.1 Stage 1: WARC Parsing and Document Extraction

The goal of Stage 1 (a.k.a. warc2html) is to extract HTML code and additional information about
documents in the downloaded crawls. Specifically, it selects relevant WARC records by their record
type and content type, filters out documents from a black list of URLs, and finally dumps HTMLs and
metadata to the output JSON files.

3.2.1.1 The warc2text tool

The tool warc2text10 was previously developed and used in the ParaCrawl project. It was written
in C++ with efficiency in mind to be able to scale to several petabytes of input data. For HPLT, it
has been adapted to extract substantially more metadata (including document URLs, paths to the
source WARC files and record positions inside, content types, timestamps) and support different output
formats (in particular, ZSTD-compressed JSONlines used in the latest HPLT data release). Also,
options to skip language identification and text extraction were added to adapt the tool to the next
stages of text extraction. Finally, an optional processing step is added that dumps all WARC records
having URLs ending with “robots.txt” to a separate WARC file for future filtering.

A more detailed list of the changes can be found on GitHub.11

3.2.1.2 Parallel processing of a set of crawls

To process a large volume of web crawls with warc2text a set of helper scripts were developed.12 They
help efficiently process all downloaded web crawls on several compute nodes directly attached to the
storage in one of the data centres. This processing procedure consists of several steps.

1. Inspect the downloaded crawls and discover WARC files to process.

9The software for raw text extraction developed and used for preparation of the latest HPLT data release along with its
technical description is published in https://github.com/hplt-project/warc2text-runner/tree/main/two.

10https://github.com/bitextor/warc2text
11Version 1.2.0 of warc2text was employed for the latest data release https://github.com/bitextor/warc2text/

releases/tag/v1.2.0
12https://github.com/hplt-project/warc2text-runner/blob/main/two/README.MD#stage1-aka-warc2html
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3. Data Processing Software 3.2. Raw Text Extraction

2. Combine the discovered WARC files into batches to reduce the number of output files in order to fit
the limitations of the file system. We used batches of 1000 WARC files each. For each batch about
200 output folders are generated, one per detected language, and 3 files are dumped to each folder:
html.zst contains extracted HTMLs, metadata.zst contains additional information about each
document, robotstxt.warc.gz contains WARC records with robots.txt files for further filtering
of documents disallowed for crawling.

3. Run warc2text in many parallel processes on several compute nodes. We used 2 nodes with 250
process on NIRD and 3 nodes with 60 processes on CESNET.

As the result of applying this procedure to the crawls downloaded for the latest HPLT data release 0.93
PB of data (mostly compressed HTMLs) were extracted from about 4.45 PB of web crawls, almost 5×
reduction in size.

3.2.2 Stage 2: Text Extraction & Language Identification

The goal of Stage 2 (a.k.a. html2text) is to build a set of monolingual corpora for the selected natural
languages from HTML pages extracted in Stage 1. More specifically, the following tasks are solved
during Stage 2 of text extraction.

1. Parsing HTMLs and building their tree representations required in the following processing steps.

2. Removing boilerplate, i.e. parts of web pages that do not represent their main content, and
extracting text in natural language from the remaining parts (see 3.2.3).

3. Identifying the language of each document and adding the extracted text to the corresponding
corpus (see 3.2.4).

4. Detecting machine-translated texts by searching indicative tags and attributes in the HTML
trees.13

These tasks are solved by the pipeline developed specifically for processing data for the latest HPLT
data release on LUMI.14 On the highest level the pipeline consists of two processing steps running in
parallel: the first step15 does HTML parsing and everything requiring the parsed tree, i.e. text extract
with boilerplate removal and detection of machine-translated texts, while the second step16 takes the
extracted text and identifies its language. The first processing step is about 10 times slower than the
second one. Thus, when running this pipeline for the second data release out of 250 workers on each
LUMI node 10% were running the second step and the rest were running the first step. Within a single
node, different workers were processing different documents from the same html.zst file. Parallelization
across different compute nodes is trivial, with each node processing a dedicated set of html.zst files.

13The following patterns are used: https://github.com/hplt-project/warc2text-runner/blob/main/src/warc2text_
runner/two/tagfilter/mt-filter-list.annotated

14Version 2.0.0 was employed: https://github.com/hplt-project/warc2text-runner/releases/tag/v2.0.0.
See https://github.com/hplt-project/warc2text-runner/blob/main/two/README.MD#stage2-aka-html2text for
more information about running this pipeline.

15https://github.com/hplt-project/warc2text-runner/blob/main/src/warc2text_runner/two/trafilatura/
traf.py

16https://github.com/hplt-project/warc2text-runner/blob/main/src/warc2text_runner/two/fastertext_lid/
proto_langid.py
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3. Data Processing Software 3.2. Raw Text Extraction

Two important limitations we had to address are the limited storage space on LUMI that did not fit all
outputs from Stage 1, and also much slower file transfer between data centres and LUMI compared to
the speed of data processing on LUMI. To address these limitations, we have implemented an alternative
method of running Stage 2 that simultaneously downloads and processes data in portions fitting into
the available storage space. Another problem we faced was disproportionately long waiting time in
the LUMI queue compared to the time of actual data processing. To address this problem, we had
to carefully select the number of html.zst files processed by each task. On one hand, increasing this
number reduces the total number of tasks, and thus, the waiting time in the LUMI queue. On the other
hand, there is an upperbound because each task should fit into the LUMI maximum processing time of
2 days. Based on the observation that the processing time depends more on the total size rather than
the number of input files, we split all html.zst files into batches of approximately the same size and
assigned one batch to each task. We experimentally set the batch size to 1500 GB.

Running Stage 2 for the latest HPLT data release resulted in about 62 TB of compressed raw texts and
1 TB of compressed language information. This is roughly 15× reduction in size compared to outputs
of Stage 1 and 75× reduction compared to the originally downloaded crawls.

3.2.3 Stage 2: Text Extraction with Boilerplate Removal

Text extraction with boilerplate removal is implemented using the Trafilatura17 library [1]. The
extraction algorithm is based on a bunch of rules and heuristics, and in case they did not work it falls
back to using other text extraction libraries readability-lxml18 and jusText19.

We called the text extraction function of Trafilatura with non-default values of some arguments, they
are listed in table 3.1. Namely, we skip text from HTML tables and comments, do not disable the
fallbacks to other extraction libraries but disable the fall back to Trafilatura’s own simple extraction
baseline in case the extracted text is shorter than MIN_EXTRACTED_SIZE.20

Name Value
include_comments False

include_tables False
no_fallback False

MIN_EXTRACTED_SIZE 0

Table 3.1: Arguments of Trafilatura explicitly specified. All other arguments have their default values.

3.2.4 Stage 2: Document Language Identification

The language identification component is based primarily on work published in [2], incorporating further
refinements described in [3].

17https://trafilatura.readthedocs.io, version 1.8.0
18https://github.com/buriy/python-readability
19https://github.com/miso-belica/jusText
20We found that the outputs of the baseline method are very noisy, so it is better to return nothing for a document rather

fall back to this baseline.
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3. Data Processing Software 3.2. Raw Text Extraction

3.2.4.1 Language identification model training data

We used the OpenLID dataset as training data for the language identification component [2], 21 with
the addition of a corpus of Saudi dialect social media data to improve Arabic coverage [4]. All data
sources in OpenLID are either released under an open license for research purposes or described as free
to use.

We found that some of the sentences in non-Latin scripts in the original OpenLID dataset were not split
correctly, so we wrote an updated version of the preprocessing script based on the LASER toolkit 22. It
uses a number of existing external sentence splitters to improve splitting for Ge’ez, Ol Chiki, Burmese,
Khmer, Lao, and Tibetan. After sentence splitting, we ran a data pre-processing pipeline which
normalised punctuation and replaced non-printing characters with the sacremoses library, normalised
unicode data with the unicodedata library, and removed emoji. Further details are available in [3].

We noticed particularly poor performance for Arabic dialects compared even to other close language
varieties (e.g. Croatian and Serbian). Analysis in [3] found that whilst Arabic dialects are easy to
distinguish from other languages, it is difficult to distinguish Arabic dialects from each other. We
therefore combined all Arabic dialects into one class (Arabic macrolanguage, (ara_Arab)). Otherwise,
we followed the same language labels for language identification as used in [2]. Prior to training, we
followed [5] and [6], and sampled proportionally to p0.3l , where pl is the fraction of sentences in the
dataset which are in language l. This aims to ameliorate class skew issues.

The final version of the training data contains 193 language classes and 121 million sentences. The mean
number of sentences in each language class is 602K but there is significant skew: prior to sampling, the
largest class (English) contains 7.5 million sentences and the smallest (South Azerbaijani) contains 532
sentences. A full list of the languages covered is available in [2].

3.2.4.2 Language identification model architecture

We used the above dataset to train a FastText language identification model, which is a standard tool
for training such models and easily reproducible [7]. It embeds character-level n-grams from the input
text, and then uses these as input to a multiclass linear classifier. We used the same hyperparameters
as [6] given in table 3.2. Any hyperparameters not listed are set to FastText defaults. We used the
Python interface of version 0.9.2 of the tool, which is the current stable version.23

3.2.4.3 Inference

At inference time, we kept preprocessing minimal for speed, only removing digits and any characters
that were not space separators or included in the Unicode Word character category. For each valid
input, the module returns a Python dictionary containing the three language labels with the highest
predicted probabilities. Table 3.3 gives an example of input and output. In the case that the input is

21https://github.com/laurieburchell/open-lid-dataset
22https://github.com/facebookresearch/LASER/blob/main/utils/src/sentence_split.py
23https://github.com/facebookresearch/fastText/
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3. Data Processing Software 3.3. Monotexting: Cleaning & Filtering of Monolingual Text

Hyperparameter Setting
Loss Softmax

Epochs 2
Learning rate 0.8

Embedding dim. 256
Min. no. word occurrences 1000

Character n-grams 2–5
Word n-grams 1
Bucket size 1M

Threads 68

Table 3.2: Hyperparameters for the fasttext language identification model. Any hyperparameters not
given are default.

empty text or None (as a result of preprocessing with Trafilatura; see above), the language identification
module outputs {lang: None} as a Python dictionary.

Input: This is an example sentence.
Output: {lang: [eng_Latn, sun_Latn, ibo_Latn],

prob: [0.9939, 0.0021, 0.0020]}

Table 3.3: An example input and output of the language module.

3.3 Monotexting: Cleaning & Filtering of Monolingual Text

The monotexting pipeline takes care of joining the metadata and text produced by Stage 2, deduplication
of documents and adding more metadata for further cleaning of the data.

The main steps of the pipeline are:

1. Merge extracted text, WARC metadata fields and language identification metadata into a single
JSON per document. The data after this step is divided into language directories and collection24

directories.

2. Remove near-duplicates for each language within each collection.

3. Annotate each document with additional metadata for quality estimation and/or cleaning.

4. Create an additional cleaned version of the dataset, removing all the documents not meeting the
cleaning criteria.25

For further explanation of the above steps, installation, execution of the pipeline and output format,
please refer to the GitHub project page.26

The job submission logic for the monotexting pipeline has been substantially rewritten, compared to
the first data release, to be more friendly to the LUMI cluster scheduler and filesystem. Therefore,
the pipeline uses HyperQueue27 for job submission of the deduplication and annotation steps. This
24A collection is a crawl or a set of crawls. For the Internet Archive, each crawl (wide5, wide6 etc.) is a collection itself.

Instead, for Common Crawl, we join all the crawls within a year in a collection (all crawls from 2014 in cc14, all crawls
from 2015 in cc15 and so on).

25https://github.com/hplt-project/monotextor-slurm#cleaning
26https://github.com/hplt-project/monotextor-slurm/tree/v2.0
27https://github.com/It4innovations/hyperqueue/tree/v0.19.0
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3. Data Processing Software 3.4. Bitexting: Discovery and Refinement of Parallel Texts

alleviates the overload of the LUMI Slurm scheduler, reducing the number of submitted Slurm jobs
from several thousand to a hundred jobs (or as many HyperQueue workers the user decides to use).
Also, it drastically reduces the number of log files and requests to the metadata server of the LUMI
filesystem because HyperQueue keeps a single log file for each of the steps. Finally, one last advantage
is an easier job submission and monitoring for the user, being able to submit an entire step with a
single command.

For the software deployment, monotexting pipeline now uses Singularity containers. This also reduces
the amount of files, as all the installed packages are inside a single container file, compared to the
previous software deployment in the first data release, where all the compiled Rust binaries and Python
packages were installed in the cluster filesystem. Additionally, reproducibility of the software has
dramatically increased, as the built packages inside the container do not depend on the cluster software
stack available at the time the pipeline is deployed.

3.4 Bitexting: Discovery and Refinement of Parallel Texts

For parallel data discovery, there have not been any new software development. The pipeline that has
been used (cirrus-scripts), however, comes from a previous European project: ParaCrawl. So the main
job during this project has been adapting the installation procedure and environment to the LUMI
cluster. The relevant changes can be found in the LUMI branch28 of the pipeline repository.

Additionally to the repository README documentation, a setup guide29 for LUMI has been written.

28https://github.com/paracrawl/cirrus-scripts/tree/d822f608c4ae5e1b0ead8c8c445d0c10e6b50c62
29https://github.com/paracrawl/cirrus-scripts/wiki/LUMI-setup
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4 Language Model Training

This section describes the training framework for two types of language models used in the HPLT
project – small encoder-only models and large decoder-only models.

4.1 Encoder-Only Language Models

We develop a suite of encoder-only language models for all 75 languages supported in the HPLT project
initial release. These models are also known as masked language models (MLMs) after the training
objective used in the first such model, BERT [8].1 While these models can be used similarly to the
generative decoder-only models [9], their primary use in the present days is as efficient representation
learners – then they can be directly utilized to encode text segments (i.e. for document retrieval) or
further trained on downstream tasks (such as morphosyntactic parsing, sentiment analysis or reading
comprehension) – substantially outperforming decoder-only models of the same size for such use-cases
[8, 10].

Model architecture As part of the HPLT project, we developed a data-efficient language model, which
we call LTG-BERT [11]. We demonstrated that this model can be trained on a text corpus containing
only 100 million words with comparable performance to the original BERT model trained on much
larger dataset [11]. Therefore, we can support even the most low-resource languages covered by the
HPLT project and train a monolingual masked language model for each of them.

Implementation The training pipeline for these models contains all steps from taking the raw HPLT
corpus all the way up to releasing a Hugging Face-compatible language model (in our case available
at https://huggingface.co/HPLT). We believe that it is important to not only openly release the model
weights but also the source code that enables anyone to reproduce (and further improve upon) our
results; the source code in available at https://github.com/hplt-project/HPLT-WP4. The entry-point of
the repository is the file schedule.sh, which initializes a cascade of parallelized SLURM scripts that
performs the following steps: 1 sharding the raw corpus into manageable chunks, 2 training a subword
tokenizer, 3 tokenizing the shards, and 4 training an LTG-BERT model on the tokenized corpus.
5 Then the user can convert the model checkpoint into a Hugging Face-compatible directory, and 6

evaluate it on morphosyntactic parsing.

4.1.1 Corpus sharding

As the first step, we split the raw text corpus into chunks of manageable size. These chunks can
then be all processed in parallel. We set the size of each chunk so that it can be fully loaded
into working memory when training the language model. The entry point for corpus sharding is
preprocessing/shard_worker.sh.

1Note that these two terms are not entirely equivalent – ‘encoder-only‘ refers to the bidirectional architecture, while
‘masked‘ refers to the fill-in-the-blanks training objective. But in practice (and in our case), they can be used
interchangeably.
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4.1.2 Training a subword tokenizer

All relevant modern language models ingest text encoded as subword-units, using a fixed vocabulary of
possible subwords. This vocabulary has to first be initialized from a text corpus, in particular we use a
greedy heuristic for searching for a semi-optimal vocabulary called WordPiece [8]. We use vocabulary
size of 215 = 32 768 subword tokens, other details are defined in preprocessing/train_tokenizer.py.
A new tokenizer can be trained by running preprocessing/train_tokenizer.sh.

4.1.3 Tokenizing the corpus

We then use WordPiece encoding to segment each corpus shard into subwords (based on the trained
subword vocabulary). This step has two reasons: to not slow down LM training by concurrent
tokenization and to shrink the size of the training corpus. Tokenization can be called by running
preprocessing/tokenize_shards.sh.

4.1.4 Language model training

The encoder-only language models are trained according to the LTG-BERT training recipe [11]. The
model architecture and all training details are fully defined in the encoder-only/ directory. The
training script is written on top of the PyTorch framework.2 It takes advantage of the computational
resources on the LUMI supercomputer by distributing the training across 64 AMD MI250x GPUs,
significantly speeding up the training process. It can be started by running encoder-only/train.sh.

4.1.5 Hugging Face conversion

The --output_dir argument of the previous script defines the directory with saved model checkpoints.
The weights defined in these checkpoints can then be converted into Hugging Face-compatible models
by running encoder-only/convert_to_hf.py.

4.1.6 Evaluation

The compatibility with Hugging Face API allows the user to easily evaluate the trained language models
on numerous downstream tasks.3 We use morphosyntactic parsing as an example, primarily because
this task is available in a unified format for most of the 75 supported languages [12].4 The directory in
evaluation/ud/ defines a morphosyntactic parser; evaluation/ud/train.sh finetunes a pretrained
language model on morphosyntactic parsing and then evaluates its performance on a held-out dataset.

2https://pytorch.org/
3https://huggingface.co/docs/transformers/training
4https://universaldependencies.org/
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4.2 Decoder-Only Language Models

Several iterations of software tools have been applied in the project for the purpose of training decoder-
only (or causal) language models, building on the Megatron5 and Megatron-DeepSpeed6 frameworks.
These tools have been used to create the FinGPT model family7 and the 176B BLUUMI model8 [13],
the Poro 33B model9 [14], as well as the Viking model family,10 and are currently used to create models
supporting all EU languages for a future release. All software is forked from Megatron-LM and therefore
leverages its mechanics, such as model parallelism. The reason for variance in used software stacks is
the throughput experimentation and feature availability in the LLM pretraining open-source software
at the time of testing.

Model architecture The FinGPT model family and the BLUUMI model follow the model architecture
of the GPT3 model family [10] as modified for the BLUUMI model [15], using ALiBi position embeddings
[16] and additional layer normalization [17]. The FinGPT models range from 186M to 13B parameters,
and Poro inherits the same architecture while increasing the number of parameters to 34B.

The Viking model family consists of multilingual models of sizes of 7B, 13B and 33B parameters,
following the Llama 2 architecture [18]. This differs from the architecture of the FinGPT and Poro
models in using rotary positional embeddings [19] instead of ALiBi, and a SwiGLU activation function
instead of GELU. The 33B parameter model also uses Group Query Attention for inference efficiency
[20].

Implementation The process to create the decoder-only language models involves a range of tools for
data preprocessing, tokenizer creation, data formatting for training, model training and evaluation, as
well as the conversion of the final checkpoints into a format compatible with the widely used Hugging
Face transformers library11 for release. We make the tools used for all of these steps available under
open source licences in the repositories identified below, and detail the processing steps and the scripts
used for specific steps in the following sections.

• The version of Megatron-DeepSpeed used to train the FinGPT and Poro models is available at
https://github.com/TurkuNLP/Megatron-DeepSpeed/tree/fingpt

• The version of Megatron-DeepSpeed used to train the Viking models is available at https:

//github.com/LumiOpen/Megatron-DeepSpeed

• A version of Megatron-LM adapted for LUMI and used for training upcoming models is available
at https://github.com/LumiOpen/Megatron-LM-lumi

5https://github.com/NVIDIA/Megatron-LM
6https://github.com/microsoft/Megatron-DeepSpeed
7https://huggingface.co/TurkuNLP/gpt3-finnish-13B
8https://huggingface.co/TurkuNLP/bloom-finnish-176b
9https://huggingface.co/LumiOpen/Poro-34B

10https://huggingface.co/LumiOpen/Viking-33B
11https://huggingface.co/docs/transformers
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4.2.1 Training a BPE-tokenizer

All decoder-only models created in the project use Byte Pair Encoding (BPE) subword tokenizers
trained on samples of the data used to pretrain their respective models. The script to train these tok-
enizers is available from https://github.com/TurkuNLP/finngen-tools/blob/main/create_bloom_

tokenizer.py.

For the Poro tokenizer, we added special tokens for code as in StarCoder.12 We also included
special tokens of <|user|> and <|assistant|> to improve chat performance. The Viking tokenizer
adopted OpenAI’s Chat Markup Language (ChatML)-tokens to change these to <|im_start|> and
<|im_end|>. As these changes are easy to apply to the given script by simply changing the contents of
the ADDITIONAL_SPECIAL_TOKENS, we only provide the script matching the Poro-tokenizer.

All of the FinGPT, Poro and Viking-tokenizers utilize a unique vocabulary of 217 = 131072 tokens.

4.2.2 Tokenizing the corpus

For the purposes of the primary pretraining process, the source text corpora are first tokenized and
converted from their original JSON-encoded plain text format to a binary input format that can be read
efficiently in a random access manner by workers in the pretraining process. While this tokenization and
conversion only requires CPU processing and is lightweight in comparison to the pretraining process, it
is often convenient to convert parts of the source texts separately and then later merge the binary files
into larger components for pretraining. The script for tokenization and conversion is made available
at https://github.com/TurkuNLP/Megatron-DeepSpeed/blob/fingpt/tools/preprocess_data.py

and the script for merging binary input files at https://github.com/TurkuNLP/Megatron-DeepSpeed/
blob/fingpt/tools/merge_preprocessed_data.py.

4.2.3 Language model training

All decoder-only models are trained using the GPU cluster of the LUMI supercomputer, consisting
of compute nodes with four MI250x GPUs each. The training configurations for the FinGPT- and
BLUUMI-models mimic the configurations of GPT-3, which are detailed in the FinGPT paper [13].
Poro follows the original Llama training recipe [21], as detailed in the Poro paper [14]. FinGPT
models were trained for 300 billion tokens and Poro for 1 trillion tokens, with training scaled up
to 128 nodes (512 MI250x GPUs) for Poro. For decoder-only training, the main Python-script
is pretrain_gpt.py and instructions for training on LUMI can be found from the README.md at
https://github.com/TurkuNLP/Megatron-DeepSpeed/tree/fingpt.

The Viking family of models follows the recipe introduced in [18], and is trained for 2 trillion tokens.
For Viking we adopted Microsoft’s Megatron-DeepSpeed13 to enable features such as FlashAttention14.
The 33B model training was scaled to 256 nodes totalling to 1024 MI250x GPUs. As before, the

12https://huggingface.co/bigcode/starcoder
13https://github.com/LumiOpen/Megatron-DeepSpeed
14https://github.com/ROCm/flash-attention/tree/flash_attention_for_rocm
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main Python script is pretrain_gpt.py. We also provide SLURM scripts for Viking models named
pretrain_viking_{7,13,33}B.sh as a reference implementation.

4.2.4 HuggingFace conversion

Model checkpoints were converted into formats compatible with the Hugging Face transformers

library using tools published with the libraries used for conversion. Specifically, for the Fin-
GPT and Poro models, the script https://github.com/TurkuNLP/Megatron-DeepSpeed/blob/

fingpt/tools/convert_checkpoint/deepspeed_to_transformers.py was used, and for Viking
models, the script https://github.com/jonabur/Megatron-DeepSpeed/tree/main/tools/convert_
checkpoint/viking_conversion/ was used.

4.2.5 Evaluation

Decoder-only language models were evaluated conventionally using zero- and few-shot task settings,
without finetuning the models after their initial pretraining. As the models were converted into a
format compatible with the Hugging Face transformers library, it was possible to evaluate them using
standard tools introduced by the community. Newly introduced evaluation datasets such as FIN-bench15

were formatted to conform with the input specifications of the evaluation tools. For evaluating the
FinGPT family of models, the BIG-bench evaluation tools16 were used, and to evaluate the Poro,
Viking, and subsequent models, the EleutherAI LM eval harness17 was used.

15https://github.com/TurkuNLP/FIN-bench
16https://github.com/google/BIG-bench
17https://github.com/EleutherAI/lm-evaluation-harness
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5 Translation Model Training

In this chapter, we describe our software tools for creating machine translation (MT) models. This
includes tools for selecting and cleaning the data (5.1); for managing the training pipeline (5.2), for
scheduling and feeding data (5.3) and for producing efficient models for deployment (5.4). So far
our tools have targetted encoder-decoder architectures, but given the recent success of decoder-only
architectures for MT [22, 23, 24], we are investigating how to extend our tools to support these systems
too.

5.1 Data Selection and Cleaning: OpusCleaner

Figure 5.1: Listing datasets with OpusCleaner

Our tool for selecting and filtering parallel data for machine translation is OpusCleaner. This is available
on GitHub1 and also mentioned in our earlier deliverable (D3.1 Software for cleaning data sets)2 and

1https://github.com/hplt-project/OpusCleaner
2https://hplt-project.org/HPLT_D3_1___Software_for_cleaning_data_sets.pdf
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described in our technical report [25]. For detailed instructions on installing and running OpusCleaner
we refer the reader to our GitHub repository; here we offer an overview of the purpose and operation of
the tool.

OpusCleaner consists of a frontend (written using the Vue3 framework), an API and a command-line
interface. An alternative, terminal-based frontend (Cli-a-NER) has also been developed in HPLT, and
is also available in a separate repository4. The general idea is that the system builder can use the
frontend to explore and select parallel datasets, to develop filters and observe their effects, and finally to
save the results in a configuration file. This configuration file can then be used in the training pipeline
to download datasets and run filters, enabling reproducible results.

In Figure 5.1 we show the interface for selecting datasets. The user supplies a language pair, and
OpusCleaner will list the available parallel datasets from sources such as Opus. The user can then
choose which datasets they would like to include in the project, and these are downloaded.

Once datasets are downloaded, OpusCleaner allows the user to explore the datasets (to assess their
quality and topic, for instance) and to select and apply filters. For exploration, the OpusCleaner
interface is able to show randomly selected portions of the datasets, and for filtering the interface allows
the user to select filters from a large list and observe the effect. OpusCleaner supports all filters from
the existing tool OpusFilter5 and supplies some of its own. The user can label datasets according to
their quality (labels that can be used later in OpusTrainer (5.3) and finally save the dataset and filter
configuration file. Figure 5.2 shows the filter exploration interface of OpusCleaner.

Given an OpusCleaner configuration file (which uses the JSON format) the OpusCleaner command-
line tools can be used to download the datasets referenced in the file, and apply the set of filters.
The idea is that this can be used in a server-based workflow to build MT systems in a reproducible
pipeline. OpusCleaner configuration files can be shared and published, enabling others to copy the data
preparation steps, and to build on and extend the model-training pipelines.

3https://vuejs.org/
4https://github.com/hplt-project/clianer
5https://github.com/Helsinki-NLP/OpusFilter
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Figure 5.2: Selecting and applying filters with OpusCleaner

5.2 Management of the Training Pipeline: OpusPocus

OpusPocus pipeline manager is a modular framework aimed at simplifying the scaling, deployment and
execution of the NMT pipelines within the HPLT project. The initial pre-release version of OpusPocus
used for training translation models was previously described in an earlier Deliverable (D5.1: Translation
models for select language pairs6). In this deliverable, we provide an update on the current development
progress and a brief summary of the future OpusPocus development. Since the end of August, the
repository is now publicly accessible on GitHub.7 We plan to introduce the pipeline manager during
MT Marathon 2024 to gain at least a small user-base that can provide us feedback we can use to
improve the overall user experience.

Figure 5.3 provides the overview of the basic OpusPocus workflow. The user first provides a pipeline
configuration file with the pipeline DAG definitions and individual step parameters. Furthermore,
the provided configuration can be overwritten using command-line options. This is useful for fast

6https://hplt-project.org/HPLT_D5_1___Translation_models_for_select_language_pairs.pdf
7https://github.com/hplt-project/OpusPocus
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deployment of multiple variations of a single pipeline, i.e. using the pipeline with varying language
pairs. The pipeline is then executed using the chosen execution method with parameters related to the
machine to be executed on (number of CPUs, GPUs, available memory, etc.).
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Figure 5.3: Overview of the basic OpusPocus workflow. The user provides the pipeline definition with
individual parameters using the pipeline config. The pipeline is then initialized and executed using the

chosen execution method, providing the output files at the end of successful execution.

The pipeline manager is highly modular, allowing the user to construct various existing training
pipelines for NMT. Furthermore, the OpusPocus architecture design is general enough to allow further
extension to other NLP tasks by implementation of the necessary pipeline steps. This can be done by
implementing the abstract OpusPocusStep Python interface; while the implementation requires some
level of Python coding skill, the interface is well documented to guide the contributor’s implementation
process.

The pipeline definition and execution is strictly separated, allowing execution either by running the
pipeline code directly in the user terminal or scheduling the pipeline jobs via HPC scheduler (e.g. Slurm).
We support dataset sharding, enabling parallel processing of large corpora. We are currently in process
of extending the execution management features, including partial pipeline restart or rescheduling of
failed tasks.

While still having progress in feature implementation since the release of the Deliverable D5.1 we heavily
refocused on implementing a more thorough continuous delivery / continuous integration testing. This
was required to guarantee reasonable test coverage before making the OpusPocus repository public and
to make future development and maintenance more efficient. Although we still plan to further increase
the test coverage, we plan to shift focus back to implementing missing features after the public release.

Current feature support focuses mainly on the standard NMT training and evaluation, including dataset
cleaning, vocabulary inference and monolingual backtranslation. At the moment, we support model
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training directly using Marian NMT. However, we are also in progress of adding the OpusTrainer
support to enable more sophisticated dataset mixing and more robust model training. We are also
considering adding support for additional training frameworks, most likely ones that enable decoder-only
model training. Based on the user feedback, we also plan to simplify the current pipeline configuration
schemes to make them more user-friendly. While this is not a top priority, we hope to port the existing
OpusDistillery into OpusPocus, allowing a full end-to-end, training + student distillation pipeline.

5.3 Training Data Scheduling: OpusTrainer

The purpose of OpusTrainer is to provide training data to an MT training engine such as Marian.8

With OpusTrainer, the system builder can specify multiple data sources, provide details about how
they should be mixed, and how this mixing should change as training progresses. This is all configured
from a YAML file to enable reproducibility. OpusTrainer also supports a range of data augmentations
which enables the training of models to better translate noisy input, and to handle terminology. These
augmentations can inject case and spelling variations, and terminology tags, for instance.

OpusTrainer was described in an earlier Deliverable (D5.1: Translation models for select language
pairs),9 which in turn was an extract from our technical report [25]. The code and detailed instructions
for installing and running OpusTrainer can be found in the GitHub repository.10 We therefore refer the
reader to those reports for more detail about OpusTrainer.

5.4 Producing Efficient Models for Deployment: OpusDistillery

OpusDistillery is a framework to streamline the Knowledge Distillation (KD) process of multilingual
NMT models. OpusDistillery’s main features are the integration of openly available teacher models
from OPUS-MT and Hugging Face, comprehensive multilingual support and robust GPU utilization
tracking.

The tool implements standard Sequence-Level Knowledge Distillation (Seq-KD) and its enhanced version,
interpolated Seq-KD. Seq-KD [26] trains a student model on the sentence-level outputs produced by a
teacher model. This process involves two main steps: (1) generating a synthetic dataset by forward
translating the source text using the teacher model, and (2) training the student model on this generated
data.

OpusDistillery is an extension of the Firefox Translation Training pipeline (FTT).11 The final student is
a quantized Marian model, fast at decoding and ready to be fed to the Bergamot-translator application.12

The pipeline works by feeding a YAML configuration file to Snakemake [27], a workflow management
system that enables the definition of computational pipelines through rules specifying their input and
output files. When the expected output files of a particular rule are absent, Snakemake systematically
backtracks to identify and execute the necessary preceding rules in sequence to produce the required

8https://marian-nmt.github.io/
9https://hplt-project.org/HPLT_D5_1___Translation_models_for_select_language_pairs.pdf

10https://github.com/hplt-project/OpusTrainer
11https://browser.mt/
12https://github.com/browsermt/bergamot-translator
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outputs. It is possible to run a specific rule or specify a target file for a given pipeline run. For NMT
training, the tool uses SentencePiece [28] and Marian [29].

Our pipeline can be divided into five major steps: data preparation, synthetic dataset generation,
student training, exporting and evaluation. A high-level overview of the steps is depicted in Figure 5.4.

Figure 5.4: Overview of the OpusDistillery pipeline.

OpusDistillery is available at https://github.com/Helsinki-NLP/OpusDistillery.
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J. Kanerva, N. Kara, R. Karahóǧa, A. Kåsen, T. Kayadelen, S. Kengatharaiyer, V. Kettnerová,
L. Kharatyan, J. Kirchner, E. Klementieva, E. Klyachko, P. Kocharov, A. Köhn, A. Köksal,
K. Kopacewicz, T. Korkiakangas, M. Köse, A. Koshevoy, N. Kotsyba, B. Kovačić, J. Kovalevskaitė,
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