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Abstract

In HPLT, we have been developing tools for automated model building (OpusCleaner, OpusTrainer
and OpusPocus) as well mining the Internet Archive for parallel data. In this deliverable we describe
a set of translation models that we built using the HPLT tools, and the HPLT data. The models
cover several lower resource language pairs, and demonstrate the value of HPLT data in improving
translation performance, over baseline models trained on all of the Opus data.

https://hplt-project.org
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1. Executive summary

This deliverable describes the initial HPLT translation model release. We aimed to train translation
models with all language pairs in the first release of the HPLT parallel data, using the data preparation
and training tools that we are developing in the project. We describe OpusTrainer (a tool for managing
the training data for MT systems) and OpusPocus (a tool for orchestrating model training for MT).
We then describe the architecture and process for model training using these tools. In the evaluation
section we show the degree to which HPLT data affects translation performance when added to the
large Opus training corpus.
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2. Introduction

The main aim of the first HPLT MT model release was to bring together all the tools that we have
been developing for the MT model pipeline, and to show that they are capable of building a suite
of MT models in a mostly automated fashion. The model building also helped us to examine the
quality of the first HPLT data release (Tiedeman et al., 2023), and to see if it influences performance
when combined with the much larger Opus parallel data collection. For this reason, we aimed to build
bilingual models for all the language pairs included in the first HPLT parallel data release.

The tooling for the model-building pipeline includes OpusCleaner (for selecting and cleaning training
data), OpusTrainer (a data scheduling and data augmenting tool), and OpusPocus (for managing the
training process itself). The first tool is described in a different deliverable (Ramírez-Sánchez, 2024)
whereas the other two tools are described in Section 3.

The actual release of the trained models is through Hugging Face (in the HPLT organisa-
tion https://huggingface.co/HPLT, under the MT model collection https://huggingface.co/

collections/HPLT/machine-translation-models-65dba9a92f6d2dfc2755cd52). We also have a
repository (https://github.com/hplt-project/mt-models) which contains the configuration re-
quired to download and process the data, and train and evaluate the models. The idea is that a
third party should be able to use this repository, together with our tool chain, to completely reproduce
our model building. We discuss the model building itself in Section 4, referring to the repository when
appropriate.

Finally, to evaluate the models, we used the FLoRes-200 (NLLB team et al., 2022) and NTREX
(Federmann et al., 2022) data sets, both of which consist of English source texts translated into many
different target languages, including all the language pairs in our release. The evaluation results are
in Section 5.
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3. Tools

3.1. OpusTrainer

This section is an extract from Bogoychev et al. (2023)

Training high-quality machine translation systems requires carefully combining parallel data from
different sources and quality levels; applying on-the-fly modifications to it and more.

This is challenging to achieve with neural network toolkits that make use of static training data,
because ideally, we want to modify the data mixture and potentially augment it on the fly, without
having to prepare the data first and write it to disk which is wasteful.

Multilingual model training The problem is exacerbated when training many-to-many or English-to-
many multilingual models where high-resource languages would often have orders of magnitude more
data than low-resource languages. In order for a multilingual model to train well in this setting, the
MT toolkit needs to see balanced data from all languages (Freitag and Firat, 2020). Doing this by
concatenating and upsampling data (in order to get equal amounts of data seen for all languages),
could waste multiple terabytes of disk space.

3.1.1. Data Scheduling

OpusTrainer solves this problem by streaming and mixing data from multiple sources. OpusTrainer
uses a simple YAML configuration file where the user can declare all of their data sources and a
desired mix of them for different stages of training. OpusTrainer then reads in the data from different
sources and then outputs the desired mix to stdout. OpusTrainer is meant to be used with neural
network toolkits that support reading data from stdin such as Marian (Junczys-Dowmunt et al., 2018),
but it can also output the desired data mix to a file, making it usable with all toolkits. An example
configuration that describes a full training run with various data mixings for different stages of training
can be seen in Figure 3.1.

3.1.2. Data Augmentation

Humans are very robust to decoding noisy texts, but this can pose a major challenge to machine
translation systems due to the way we collect our training data:

• Title Case and Upper Case parallel data is quite rare in training data and is sometimes regularised
during acquisition.

• Typos are also comparatively rare in training data, because either we use clean sources or we
perform spellchecking on web-crawled sources.

• Emojis, which human readers expect to be copied over from the source to the target, are not seen
during training because typically lines containing emojis are removed from the training data at
preprocessing steps.
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3. Tools 3.1. OpusTrainer

Figure 3.1: OpusTrainer basic configuration defining the data scheduling for training a model.

In order to alleviate these issues, OpusTrainer provides multiple data modifiers that can be applied on
the fly, at random on the training data:

• UpperCaser and TitleCaser

• Typo modifier, which inserts typos in words during training

• Merge modifier, which randomly merges several input sentences together to help the model be
more robust to longer sentences.

• Noise modifier, that generates random sentences consisting of unicode noise, identical on both
the source and the target side. This modifier teaches the model to copy unknown strings to the
target side.

• Inline Noise modifier: A more complicated version of the above that uses word alignments in
order to inject noisy Unicode characters (including Emoji) in approximately the same logical
place on both the source and the target side. This modifier teaches the model that unknown
sequences of <unk> characters should be just copied on the target side.

All of those modifiers are applied to each sentence in the training data with a user-defined probability
as shown in Figure 3.2.
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3. Tools 3.1. OpusTrainer

Figure 3.2: Different modifiers specified in YAML format to be used during training.

3.1.3. Terminology

OpusTrainer is able to leverage word alignment information to produce terminology-augmented sys-
tems, precisely as the one described by Bogoychev and Chen (2023). This is achieved by finding
bijective word alignment mappings between the source and the target sentences and at randomly
injecting terminology hints in the source, precisely like the one shown on 3.3.

Where is the airport? ↔ Wo ist der Flughafen?
Where is the airport __target__ Flughafen __done__? ↔ Wo ist der Flughafen?

Figure 3.3: Terminology augmentation in practice. During training, it is hinted that the target
word Flughafen corresponds to Airport, so that at inference when providing the model with

terminology hints it will know how to incorporate them at the output.

These terminology hints can then be used at inference time, and the model will know how to incorporate
the desired terminology hint at the target side. The relevant training options are shown in figure 3.4

Figure 3.4: Tag modifier is used to add terminology hints to the source during training. Values of
3% to 7% seem to work well in practice.

OpusTrainer is open source and available on GitHub,1 with ample documentation and examples. Opus-
Trainer is designed to be used mainly with neural network toolkits that read in training input on stdin,
as it takes care of shuffling between epochs, resuming training and all other functions normally done
by the data module of a neural network toolkit. It can, however, also be used to write a preprocessed
training corpus on disk so toolkits that do not support reading stdin can also make use of it.

1https://github.com/hplt-project/OpusTrainer
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3. Tools 3.2. OpusPocus

3.2. OpusPocus

This section describes the OpusPocus NMT training pipeline manager.2 The main goal of the pipeline
manager is to abstract and automate the repetitive parts of the training process such as data prepara-
tion, model training, generation of synthetic parallel data by backtranslation and the model fine-tuning.
A new user should be able to run the default training pipelines without any knowledge about the imple-
mentation details, simply by plugging-in their training data (possibly manually inspected and assessed
for cleaning) and running a pipeline execution command.

The pipeline manager is inspired by utilities such as GNU Make3 or Snakemake4. These utilities help
represent pipeline steps and their dependencies by building a directed acyclic graph (DAG) of tasks.
Before the execution of a given step, the pipeline checks the state of the dependencies and executes
any unfinished prerequisite steps. After that, the execution of the current step can proceed.

While these tools can be used for NMT training, they are too general and pipelines written using these
tools usually become too difficult to maintain, and they do not work well in HPC (high performance
computing) environments. On the other hand, NMT training often adheres to a small number of
specific scenarios that can benefit from a customised pipeline manager utility. Furthermore, NMT
training within the HPLT project poses unique challenges related to training using the LUMI HPC
cluster which come with their own set of limitations for the user, e.g. job runtime limits and a limit on
the number of submitted jobs. These challenges need to be addressed for efficient scaling of the NMT
training up to tens of language pairs, with hundreds of experiments needed to run in relatively short
time.

The main features of OpusPocus are:

• Implementation in Python for better maintainability due to a larger user base (compared to
bash). In the future, even the task-related scripts should be completely in Python.

• Modularity. Each step of the pipeline is isolated from the others and only requires the outputs
from its dependencies to be executed.

• Separation of pipeline execution and monitoring. The pipeline manager prepares the
input and step dependencies and allows execution of the pipeline. The manager terminates after
execution – the process monitoring is done separately by either a new manager execution or by
a separate user script.

• Separation of task definition and task execution. We plan to support various execution
methods. Currently, the support for bash and SLURM is implemented and HyperQueue5 support
is partially implemented. The execution method implementation should be independent of the
structure of individual tasks.

2https://github.com/hplt-project/OpusPocus
3https://www.gnu.org/software/make/
4https://snakemake.readthedocs.io/en/stable/
5https://github.com/It4innovations/hyperqueue
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3. Tools 3.2. OpusPocus

3.2.1. General Architecture

The two main building blocks of OpusPocus are implemented via OpusPocusStep and
OpusPocusPipeline. A user chooses a specific pipeline implementation based on its description, sets
a correct set of pipeline parameters (configurable via YAML configuration files), and executes the
pipeline. These steps are possible to perform without any prior knowledge about the code structure
and the implementation of the individual pipeline steps.

The pipeline step implementation is reusable – new pipelines can be implemented by arranging the
existing steps and their dependencies in various ways, as long as the required dependencies of the
pipeline steps are plugged-in. Furthermore, additional pipeline steps can be defined by inheriting
from the abstract OpusPocusStep class and overwriting its abstract methods. The OpusPocusStep

implements a state attribute to indicate the current step state. The currently available step states are:

• INITED – the step was successfully initialized (the directory structure and the step hyper-
parameters are available)

• RUNNING – the step has been scheduled for execution or already being executed

• FAILED – the step execution has failed

• DONE – the step execution has finished successfully

3.2.1.1. Main Program

The pipeline manager can be invoked by the go.py entry script. The script currently implements 3
main sub-commands: init, run, and traceback.

The init command. The init command invokes the pipeline initialization, and proceeds in four
steps: First, the manager checks whether all pipeline hyper-parameters are provided (using default
values for non-required parameters). Second, the manager creates a dependency DAG as defined in
the pipeline implementation. Third a directory structure is created within the directory specified
using the --pipeline-dir argument. The sub-directories in that location represent workspaces of
the individual pipeline steps. The step directory names are derived automatically based on the step
implementation. Fourth, the pipeline hyper-parameters are saved for later execution.

The run command. This command executes the pipeline using the chosen environment (e.g., bash,
slurm, etc.). The manager follows the dependency graph and starts the execution either with steps
with no dependencies, or with steps that have their dependencies already satisfied (i.e. they are in
the DONE state – this can happen when re-running after a partially successful execution). Then, the
following steps are scheduled for execution after their dependencies have finished successfully (slurm)
or wait in a subprocess until all dependencies are done (bash).

traceback This command provides a visualisation of the pipeline dependency graph and the step
hyper-parameters of the current pipeline instance.
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3. Tools 3.2. OpusPocus

3.2.1.2. The OpusPocusPipeline class

Each pipeline implementation, describing new pipeline workflow, needs to inherit from the
OpusPocusPipeline abstract class. A pipeline implementation defines its own set of pipeline parame-
ters using the add_parser method. The resulting pipeline parameterization enables launching multiple
instances of the same pipeline with specific modifications. Furthermore, the derived class must over-
write the build_pipeline_graph method. This method should contain all the graph-building logic
specific to the individual pipeline implementation (corpus cleaning process, training, fine-tuning and
its dependencies of the intermediate backtranslation steps). Finally every implementation needs to be
registered using the opuspocus.pipelines.register_pipeline decorator to be visible to the pipeline
manager. Note that the pipeline implementations are separated from the actual executions methods -
they only describe the workflow and the parameters of the individual steps.

3.2.1.3. The OpusPocusStep class

Every pipeline step implementation inherits from OpusPocusStep abstract class. The step parameters
are defined directly via the derived class constructor and are automatically saved during initialization.
Each derived class must overwrite the step_name method defining a naming scheme for the respective
step instance directories. Besides the step initialization and execution implementations, it also defines
various helper methods, for example for loading and saving the step parameters, or accessing the step
output and log directory.

The step class implements a code generation method (compose_command) which is used to create the
step execution script.6 We split the command definition into several logical parts, such as scheduler
directives, variable definitions, or exception handling. These parts can be reused in different step
definitions. The only step-specific code generation is defined in the _cmd_body_str abstract method
which needs to be implemented by the individual derived step classes.

Due to logical similarity, we provide a CorpusStep abstract class, inheriting from OpusPocusStep.
Every step implementation that modifies or creates the corpus data (corpus preprocessing, corpus
translation) should inherit from this class. The abstract class provides additional functionality, such
as output sharding or indication of the available datasets. Furthermore, it enables more specific
dependency restrictions and type checking for the pipelines.

Finally, each step needs again to be registered using the opuspocus.pipeline_steps.register_step

decorator to be visible to the .build_step, .load_step factory methods.

3.2.2. Repository Structure

The OpusPocus repository contains the following structure:

• go.py – Pipeline manager entry script.

• opuspocus/utils.py – Various helper methods.

6Currently written in bash.
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3. Tools 3.2. OpusPocus

• opuspocus/command_utils.py – Helper methods for various methods of pipeline execution (bash,
slurm, etc.)

• opuspocus/pipelines/ – implementation of the abstract OpusPocusPipeline class and its
derivations implementing a specific pipeline structures.

• opuspocus/pipeline_steps/ – implementation of the abstract OpusPocusStep class and its
derivations implementing a individual pipeline steps

All new pipeline and pipeline step class implementations need to be located in the
opuspocus/pipelines and opuspocus/pipeline_steps directories respectively and registered using
the related @register_ decorator to be available to the manager.

In future, we consider replacing the methods in opuspocus/command_utils.py with more robust class-
based implementations, similart to OpusPocusStep and OpusPocusPipeline.

3.2.3. Execution Examples

The following code is an example script for a pipeline initialization and execution:

#!/usr/bin/env bash

SRC="en"

TGT="fr"

PIPELINE_DIR="my_pipeline"

RAW_DATA_DIR="data/$SRC-$TGT/raw"

VALID_DIR="data/$SRC-$TGT/"

TEST_DIR="data/$SRC-$TGT/test"

MARIAN_CONFIG="config/marian.simple.yml"

./go.py init \

--pipeline simple \

--pipeline-dir $PIPELINE_DIR \

--pipeline-config config/pipeline.simple.yml \

--src-lang $SRC \

--tgt-lang $TGT \

--raw-data-dir $RAW_DATA_DIR \

--valid-data-dir $VALID_DIR \

--test-data-dir $TEST_DIR \

--marian-config $MARIAN_CONFIG \

--log-level info

./go.py run \s

--runner sbatch \

--runner-opts '--account=project_465000574 --partition=small-g --time=48:00:00' \
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3. Tools 3.2. OpusPocus

--pipeline-dir $PIPELINE_DIR \

--log-level info

The scripts invokes a simple pipeline and creates the pipeline directory structure inside the
$PIPELINE_DIR. The pipeline is then scheduled using SLURM. The $MARIAN_CONFIG is a standard
MarianNMT configuration file.

After the initialization, the user can check the dependency structure using the traceback sub-command:

$ ./go.py traceback --pipeline-dir "my_pipeline"

The command prints the following output:

Target 0: s.train_model.ca-en

+ s.train_model.ca-en: RUNNING

|=+ vocab_step

+ s.generate_vocab.ca-en: RUNNING

|=+ corpus_step

+ s.gather.ca-en: RUNNING

|=+ previous_corpus_step

+ s.decontaminate.ca-en: RUNNING

|=+ previous_corpus_step

+ s.clean.ca-en: RUNNING

|=+ previous_corpus_step

+ s.raw.ca-en: RUNNING

|=+ previous_corpus_step

+ None

|=+ train_corpus_step

+ s.gather.ca-en: RUNNING

|=+ previous_corpus_step

+ s.decontaminate.ca-en: RUNNING

|=+ previous_corpus_step

+ s.clean.ca-en: RUNNING

|=+ previous_corpus_step

+ s.raw.ca-en: RUNNING

|=+ previous_corpus_step

+ None

|=+ model_init_step

+ None

Target 1: s.train_model.en-ca

[...]

The pipeline has two targets (s.train_model.ca-en and s.train_model.en-ca) with shared depen-
dencies (both targets use the same training parallel corpus and vocabulary). All steps are marked as
running – they will later change state to DONE or FAILED based on the execution result.
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3. Tools 3.2. OpusPocus

3.2.4. Discussion and Future Work

We described the current state of the implementation of the OpusPocus NMT training pipeline man-
ager. The basic architecture design is finished together with a simple pipeline implementation.

In the following months, we will focus on the following tasks:

• Finish the HyperQueue support implementation. This is currently the main requirement for
pipelines that require repeating larger dataset processing, e.g. parallelized backtranslation of the
monolingual data.

• Finish the Iterative Backtranslation pipeline implementation. Based on Popel et al. (2020), we
aim to reproduce the original results and test the proposed iterative backtranslation method on
a much larger scale using the parallel data gathered during the HPLT project.

• Support for OpusTrainer. The current version of OpusPocus invokes MarianNMT directly. As a
next step, we plan to implement the support for OpusTrainer which will enable a more nuanced
curriculum learning.

• Additional features. The initial tests of the pipeline manager at scale showed that some essential
features that could improve the user experience are still missing. To name a few, we plan to
implement an improved pipeline status reporting or a more robust failure recovery.
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4. Models

4.1. Data Selection and Preparation

Our aim for this first round of model building was to produce models for the language pairs included in
the first HPLT data release, in both en-XX and XX-en directions. Due to constraints on computational
resources, we have trained models for 16/18 language pairs at the time of writing the report. We
trained models using three different data conditions, with all data derived from the Opus collection
(Tiedemann, 2012):1

HPLT Only the HPLT parallel data. We use v1.1 from Opus, but for parallel data, this is identical
to v1.2.

OPUS A concatenation of all datasets from Opus, for the given language pair, excluding data derived
from HPLT. For many language pairs, this usually includes other large-scale crawled datasets like
CCMatrix/NLLB, CCAligned, and ParaCrawl (Schwenk et al., 2021; NLLB team et al., 2022;
El-Kishky et al., 2020; Bañón et al., 2020).

HPLT+OPUS A concatenation of the data from the first two sources.

We report the data sizes at the sentence pair level in Table 4.1 for the three conditions. In addition,
we show the % size of HPLT relative to OPUS. The parallel data in this HPLT release are generally
smaller than the existing OPUS collection, with the highest being 30.9% for Traditional Chinese and
the lowest being 0.24% for Bosnian.

For each corpus, we applied a basic set of cleaning rules available in OpusCleaner and did a manual
inspection to ensure that the cleaning rules were working sensibly. Since we do not speak most of the
languages in the HPLT data release, the manual inspection was limited to a cursory sanity check in
many cases. We leave a full exploration of OpusCleaner cleaning options to future work. The json files
recording data composition and filter rules and values are included in our release GitHub repository.2

1https://opus.nlpl.eu/
2https://github.com/hplt-project/HPLT-MT-Models
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4. Models 4.2. Training

Number of sentence pairs
Pair HPLT OPUS HPLT+OPUS %
ar-en 10580773 93310073 103890991 11.339
bs-en 199810 82956680 83156490 0.241
ca-en 7172951 26546268 33719219 27.021
en-et 4950818 31404411 36355229 15.765
en-eu 531025 2815628 3346695 18.86
en-fi 20468388 125702855 146171243 16.283
en-ga 865846 15355019 16220865 5.639
en-gl 974882 16497221 17472103 5.909
en-hi 9655965 57602567 67258457 16.763
en-hr 8495511 74520266 77624591 11.4
en-is 1741021 18438611 20179293 9.442
en-mt 670912 14850871 15521783 4.518
en-nn 44376 264606 308982 16.771
en-sq 1496269 64945148 66441508 2.304
en-sw 1316875 13367808 14684683 9.851
en-zh_Hant 4447104 14380235 18827339 30.925

Table 4.1: Dataset statistics for MT model training. This shows the number of parallel sentence
pairs in the cleaned corpora, i.e. the corpora that were used for training. The “%” column specifies

the proportion of HPLT sentence pairs to the number in OPUS

4.2. Training

To ensure reasonably rapid training, allowing us to validate and debug the pipeline, we used the
modestly-sized Transformer-base (Vaswani et al., 2017) architecture preset in Marian (Junczys-
Dowmunt et al., 2018). Since we adopted a simple curriculum, where all datasets were concatenated
and shuffled together, we called Marian directly from OpusPocus as opposed to training via Opus-
Trainer. We opted for a joint sentencePiece vocabulary for the source and target languages (Kudo
and Richardson, 2018). We store the full training configuration and training logs in the model release
GitHub.

The training pipeline that we used for model building has the following steps:

Raw Copying the data files into place.
Clean Applying OpusCleaner cleaning rules.
Decontaminate Removing any overlap with test data.
Gather Concatenating data into a single file.
Generate-vocab Creating a SentencePiece vocabulary.
Train Training translation models in both directions.
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5. Evaluation

5.1. Test Sets and Metrics

For each trained model, we perform inference on two test sets: FLORES200 (NLLB team et al., 2022)
and NTREX (Federmann et al., 2022). Both test sets originated in English and translated to other
languages, by professional translators. Following conventions in the field, we choose a beam size of 6
and a maximum generation length of 512 tokens. Detailed decoding configurations are also supplied
in our GitHub repository.

The model outputs are scored using three different reference-based metrics that are commonly used
for automatic translation evaluation: BLEU (Papineni et al., 2002), ChrF++ (Popović, 2017), and
COMET (Rei et al., 2020). BLEU computes n-gram accuracy with a penalty if the output is too short;
ChrF++ is based on character n-gram precision and recall enhanced with word n-grams; COMET
is a neural metric that derives a score from source, output, and reference sentence embeddings. For
the first two metrics, we use the sacrebleu (Post, 2018) implementation.1 The sacrebleu signature
is nrefs:1|case:mixed|eff:yes|nc:6|nw:2|space:no|version:2.3.1; where we use zh as the to-
kenization method for Traditional Chinese and 13a for the rest of the languages. COMET scores
are from the reference-based version wmt-22-da.2 Full results are shown in Tables 6.1 (BLEU), 6.2
(chrF++), and 6.3 (COMET). We represent translation directions in a source-target format using
language codes. In Table A.1 in the appendix we outline the mapping between language codes and
language names.

5.2. Result Discussions

From the results, we observe that the highest metric scores are obtained when both HPLT and OPUS
data are used in many cases, compared with using HPLT or OPUS data alone. Such a trend is
consistent across the two test sets and three evaluation metrics. This underscores the inherent value
that HPLT parallel data contributes to the current open-source landscape in machine translation.
For languages that do not benefit from the addition of HPLT data, it could be that the HPLT data
is to small (relative to OPUS) to make a difference, or that the HPLT is too noisy (which requires
investigation) or out-of-domain. We do not observe any cases where adding the HPLT significantly
reduces performances, according to our metrics.

The performance of HPLT-only configurations typically falls short when compared to OPUS-only setups
across most language pairs. However, it is noteworthy that the attained results remain commendable,
given that the HPLT data are usually just around 10% of the sizes of OPUS. Specifically, HPLT
surpasses OPUS in Traditional Chinese despite having only 30% of its size. HPLT data alone results
in very low numbers for Norwegian but seems to be beneficial when mixed with OPUS data.

1https://github.com/mjpost/sacrebleu
2https://huggingface.co/Unbabel/wmt22-comet-da
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6.Conclusion

We have described the tools developed from translation model building in HPLT, and the initial set of
models. The models are available from our Hugging Face organisation, and the model building helps
to validate our tools and data sets. In the second half of the project we expect to release an improved
set of models, using more and better data, adding back-translation and multingual MT, as well as
developing the robustness and usability of the tool-chain.

FLORES-200 NTREX
Pair HPLT OPUS HPLT+OPUS HPLT OPUS HPLT+OPUS
ar-en 35.0 40.2 40.1 28.6 35.1 34.7
en-ar 26.8 28.9 29.2 23.9 25.6 25.8
bs-en 12.8 39.3 37.7 9.4 36.0 35.1
en-bs 4.7 28.1 27.9 4.1 24.2 23.6
ca-en 41.0 44.9 44.5 31.3 36.3 35.7
en-ca 38.4 42.8 42.8 32.0 35.8 35.8
et-en 30.6 30.9 32.7 24.3 26.1 27.4
en-et 23.7 25.1 25.2 22.0 24.2 24.5
eu-en 19.4 23.4 24.5 15.7 20.4 21.2
en-eu 12.1 14.7 16.2 9.0 11.5 12.0
fi-en 29.0 29.6 30.9 22.5 25.3 24.8
en-fi 21.7 23.4 22.5 16.7 18.7 17.9
ga-en 29.9 38.6 38.4 24.7 34.3 33.8
en-ga 27.3 33.1 33.0 21.2 25.7 25.5
gl-en 31.4 37.4 38.0 27.8 34.1 34.8
en-gl 27.9 32.2 32.5 27.6 32.7 32.7
hi-en 35.2 38.9 38.2 27.4 33.0 32.6
en-hi 32.8 34.8 34.5 26.2 27.6 27.7
hr-en 33.1 35.4 35.7 30.1 37.0 37.1
en-hr 28.4 30.5 30.5 28.3 32.7 32.5
is-en 25.3 30.9 31.5 23.2 29.5 30.1
en-is 20.6 24.0 23.9 18.7 23.0 22.6
mt-en 41.4 51.8 51.9 34.2 46.6 46.6
en-mt 30.6 39.1 39.6 24.1 31.6 32.1
nn-en 1.4 21.0 23.1 1.1 18.3 21.1
en-nn 0.6 14.7 16.6 0.4 14.0 15.7
sq-en 31.7 38.3 37.8 30.7 40.2 39.1
en-sq 27.8 30.8 30.7 29.2 32.9 32.7
sw-en 27.2 37.4 38.2 27.0 36.6 37.1
en-sw 28.4 32.8 32.8 30.5 34.8 34.9

zh_hant-en 20.3 18.2 21.0 18.2 16.9 19.9
en-zh_hant 25.4 18.5 23.4 21.3 14.2 19.6

Table 6.1: BLEU results
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6. Conclusion

FLORES-200 NTREX
Pair HPLT OPUS HPLT+OPUS HPLT OPUS HPLT+OPUS
ar-en 58.5 63.2 63.1 54.6 59.1 58.9
en-ar 55.0 56.5 56.9 50.6 52.0 52.2
bs-en 38.0 62.7 61.7 34.0 59.5 58.8
en-bs 26.0 54.9 54.6 23.9 50.4 50.0
ca-en 64.4 66.8 66.5 57.7 60.6 60.2
en-ca 61.7 64.8 64.8 56.2 58.9 59.0
et-en 56.6 56.7 58.1 52.0 53.3 54.1
en-et 53.4 54.4 54.8 51.1 53.0 53.1
eu-en 45.7 49.3 51.1 41.4 46.3 47.4
en-eu 43.4 47.3 49.1 38.4 42.8 44.0
fi-en 55.2 54.9 56.4 49.7 51.3 51.5
en-fi 51.6 53.1 52.3 46.8 48.6 47.6
ga-en 54.9 61.4 61.2 51.1 58.1 57.7
en-ga 52.6 56.9 57.1 47.4 51.3 51.2
gl-en 57.2 61.6 61.9 54.1 58.4 59.0
en-gl 54.0 57.2 57.5 52.8 56.6 56.8
hi-en 59.9 62.4 62.1 54.6 58.0 57.9
en-hi 55.5 57.3 57.1 49.6 51.0 50.9
hr-en 58.3 60.0 60.2 56.5 60.6 60.6
en-hr 54.9 56.4 56.5 53.9 57.1 57.0
is-en 50.0 54.9 55.5 49.1 54.1 54.6
en-is 45.1 48.8 48.7 43.8 48.0 47.8
mt-en 64.5 71.4 71.6 59.8 68.1 68.0
en-mt 60.7 67.2 67.1 54.3 60.5 60.9
nn-en 18.0 44.3 47.3 16.7 41.1 44.6
en-nn 15.6 37.7 39.8 14.7 36.4 38.3
sq-en 58.3 61.9 61.9 57.5 62.2 61.8
en-sq 54.6 56.9 56.6 53.4 56.3 56.1
sw-en 51.0 59.3 60.0 50.4 57.8 58.1
en-sw 54.6 58.3 58.5 55.2 58.8 59.0

zh_hant-en 47.7 44.8 47.8 44.9 42.4 45.8
en-zh_hant 18.9 16.4 18.5 21.6 15.4 20.4

Table 6.2: ChrF++ results
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FLORES-200 NTREX
Pair HPLT OPUS HPLT+OPUS HPLT OPUS HPLT+OPUS
ar-en 0.8396 0.8664 0.8645 0.8194 0.8442 0.8426
en-ar 0.8439 0.8540 0.8542 0.8062 0.8226 0.8245
bs-en 0.5882 0.8690 0.8663 0.5640 0.8553 0.8518
en-bs 0.4314 0.8809 0.8821 0.4178 0.8446 0.8435
ca-en 0.8676 0.8778 0.8771 0.8398 0.8569 0.8545
en-ca 0.8461 0.8689 0.8685 0.7897 0.8227 0.8220
et-en 0.8611 0.8646 0.8707 0.8335 0.8422 0.8483
en-et 0.8664 0.8857 0.8843 0.8087 0.8417 0.8352
eu-en 0.7810 0.8202 0.8361 0.7430 0.7957 0.8081
en-eu 0.7674 0.8111 0.8255 0.7114 0.7677 0.7796
fi-en 0.8742 0.8706 0.8788 0.8507 0.8581 0.8632
en-fi 0.8861 0.8976 0.8897 0.8313 0.8587 0.8402
ga-en 0.7653 0.8236 0.8257 0.7370 0.8019 0.7976
en-ga 0.7561 0.7903 0.7919 0.7142 0.7570 0.7530
gl-en 0.8236 0.8628 0.8638 0.7926 0.8379 0.8416
en-gl 0.8033 0.8432 0.8420 0.7342 0.7946 0.7962
hi-en 0.8741 0.8852 0.8838 0.8485 0.8616 0.8620
en-hi 0.7621 0.7882 0.7858 0.7231 0.7502 0.7465
hr-en 0.8575 0.8683 0.8692 0.8431 0.8622 0.8628
en-hr 0.8664 0.8872 0.8856 0.8092 0.8546 0.8512
is-en 0.7815 0.8372 0.8407 0.7797 0.8402 0.8450
en-is 0.7651 0.7969 0.7929 0.7161 0.7652 0.7597
mt-en 0.7601 0.8156 0.8161 0.7336 0.7983 0.7982
en-mt 0.6995 0.7234 0.7215 0.6773 0.6994 0.7022
nn-en 0.4071 0.6620 0.7042 0.4002 0.6370 0.6690
en-nn 0.5113 0.6445 0.6749 0.4848 0.5978 0.6204
sq-en 0.8468 0.8703 0.8685 0.8440 0.8701 0.8680
en-sq 0.8509 0.8780 0.8761 0.8023 0.8537 0.8517
sw-en 0.7542 0.8217 0.8249 0.7638 0.8256 0.8267
en-sw 0.7743 0.8112 0.8104 0.7572 0.8082 0.8080

zh_hant-en 0.8182 0.8007 0.8259 0.7900 0.7704 0.8000
en-zh_hant 0.8017 0.7335 0.7896 0.7492 0.6702 0.7350

Table 6.3: COMET results
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A. Appendix

A.1. Language codes

Code Language
ar Arabic
bs Bosnian
ca Catalan
en English
et Estonian
eu Basque
fi Finnish
ga Irish
gl Galician
hi Hindi
hr Croatian
is Icelandic
mt Maltese
nn Norwegian
sq Albanian
sw Swahili

zh_hant Traditional Chinese

Table A.1: Mapping between language codes and language names.

Deliverable 5.1 21


	1 Executive summary
	2 Introduction
	3 Tools
	3.1 OpusTrainer
	3.1.1 Data Scheduling
	3.1.2 Data Augmentation
	3.1.3 Terminology

	3.2 OpusPocus
	3.2.1 General Architecture
	3.2.2 Repository Structure
	3.2.3 Execution Examples
	3.2.4 Discussion and Future Work


	4 Models
	4.1 Data Selection and Preparation
	4.2 Training

	5 Evaluation
	5.1 Test Sets and Metrics
	5.2 Result Discussions

	6 Conclusion
	A Appendix
	A.1 Language codes


